The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats

نویسندگان

  • Sebastian Steven
  • Matthias Oelze
  • Alina Hanf
  • Swenja Kröller-Schön
  • Fatemeh Kashani
  • Siyer Roohani
  • Philipp Welschof
  • Maximilian Kopp
  • Ute Gödtel-Armbrust
  • Ning Xia
  • Huige Li
  • Eberhard Schulz
  • Karl J. Lackner
  • Leszek Wojnowski
  • Serge P. Bottari
  • Philip Wenzel
  • Eric Mayoux
  • Thomas Münzel
  • Andreas Daiber
چکیده

Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in type 2 diabetes mellitus (T2DM). The overarching hypothesis is that hyperglycemia and glucotoxicity are upstream of all other complications seen in diabetes. The aim of this study was to investigate effects of empagliflozin on glucotoxicity, β-cell function, inflammation, oxidative stress and endothelial dysfunction in Zucker diabetic fatty (ZDF) rats. Male ZDF rats were used as a model of T2DM (35 diabetic ZDF-Leprfa/fa and 16 ZDF-Lepr+/+ controls). Empagliflozin (10 and 30mg/kg/d) was administered via drinking water for 6 weeks. Treatment with empagliflozin restored glycemic control. Empagliflozin improved endothelial function (thoracic aorta) and reduced oxidative stress in the aorta and in blood of diabetic rats. Inflammation and glucotoxicity (AGE/RAGE signaling) were epigenetically prevented by SGLT2i treatment (ChIP). Linear regression analysis revealed a significant inverse correlation of endothelial function with HbA1c, whereas leukocyte-dependent oxidative burst and C-reactive protein (CRP) were positively correlated with HbA1c. Viability of hyperglycemic endothelial cells was pleiotropically improved by SGLT2i. Empagliflozin reduces glucotoxicity and thereby prevents the development of endothelial dysfunction, reduces oxidative stress and exhibits anti-inflammatory effects in ZDF rats, despite persisting hyperlipidemia and hyperinsulinemia. Our preclinical observations provide insights into the mechanisms by which empagliflozin reduces cardiovascular mortality in humans (EMPA-REG trial).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Empagliflozin on Sexual Function, Testicular Histology and Biochemical Parameters in Young and Middle-Aged Diabetic Rats of Type2

Background: Empagliflozin, selective glucose-sodium inhibitor of the latest drugs in the treatment of type 2 diabetes. Diabetes induced hypogonadism disrupts sexual function. There is a direct relationship between reducing blood glucose and reduced libido. In this project, the anti-diabetic drug Empagliflozin in addition to treatment has been studied, in terms of effect on sexual function. Met...

متن کامل

Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis.

Advanced glycation end products (AGEs) and receptor RAGE play a role in diabetic nephropathy. We have previously shown that increased glucose uptake into proximal tubular cells via sodium-glucose cotransporter 2 (SGLT2) stimulates oxidative stress generation and RAGE expression, thereby exacerbating the AGE-induced apoptosis in this cell type. However, the protective role of SGLT2 inhibition ag...

متن کامل

SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice.

Our previous work has shown that gene knockout of the sodium-glucose cotransporter SGLT2 modestly lowered blood glucose in streptozotocin-diabetic mice (BG; from 470 to 300 mg/dl) and prevented glomerular hyperfiltration but did not attenuate albuminuria or renal growth and inflammation. Here we determined effects of the SGLT2 inhibitor empagliflozin (300 mg/kg of diet for 15 wk; corresponding ...

متن کامل

The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension.

Diabetic nephropathy is the leading cause of end-stage renal disease in humans in the Western world. The recent development of Na+-glucose cotransporter 2 (SGLT2) inhibitors offers a new antidiabetic therapy via enhanced glucose excretion. Whether this strategy exerts beneficial effects on the development of type 2 diabetic nephropathy is still largely unclear. We investigated the effects of th...

متن کامل

Inhibition of Kidney Proximal Tubular Glucose Reabsorption Does Not Prevent against Diabetic Nephropathy in Type 1 Diabetic eNOS Knockout Mice

BACKGROUND AND OBJECTIVE Sodium glucose cotransporter 2 (SGLT2) is the main luminal glucose transporter in the kidney. SGLT2 inhibition results in glycosuria and improved glycaemic control. Drugs inhibiting this transporter have recently been approved for clinical use and have been suggested to have potential renoprotective benefits by limiting glycotoxicity in the proximal tubule. We aimed to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017